## **QCD** phase transition basics

M. Stephanov

U. of Illinois at Chicago

## **QCD phase diagram (today)**



Models (and lattice) suggest the transition becomes 1st order at some  $\mu_B$ .

Can we observe the critical point in heavy ion collisions, and how?

## **QCD phase diagram (today)**



Models (and lattice) suggest the transition becomes 1st order at some  $\mu_B$ .

Can we observe the critical point in heavy ion collisions, and how?

## **QCD phase diagram (today)**



Models (and lattice) suggest the transition becomes 1st order at some  $\mu_B$ .

Can we observe the critical point in heavy ion collisions, and how?

## **QCD phase diagram** (role of the chiral symmetry)



#### What is the order of the transition?

## **QCD phase diagram** (role of the chiral symmetry)



Note: nuclear matter is on the chirally broken side.

#### **QCD phase diagram** (role of the chiral symmetry)



Lattice: Crossover is firmly established (most recently Aoki et al)

RHIC: Matter near/above crossover - strongly coupled liquid. LHC will study it.

## **Critical points in known liquids**

Critical point  $\exists$  in many liquids (critical opalescence).

Water:



## **Confinement/deconfinement transition**

- Confinement is difficult to define for theories with quarks.
  - Polyakov's definition,  $\langle P \rangle = 0$ , does not work, because  $\langle P \rangle \neq 0$ .
    The Z<sub>3</sub> symmetry is out once quarks are in.
  - Confining string between two color sources is not infinite it snaps:

$$Q - - - - - \bar{Q} \implies Q - - \bar{q} + q - - \bar{Q}$$

Substitution of the states "? This is true by *definition* of the theory. Not a dynamical property. There is no *de*confinement in this definition of confinement.

## **Deconfinement transition in QCD**

But there is a sense in which deconfinement does happen in QCD:



I  $s/T^3$  – a measure of the number of degrees of freedom.

- I gluons and quarks act as (count as) unconfined ("free") above  $T_c$ !
- Solution NB: "free" as far as d.o.f. counting (s), but not necessarily as far as hydrodynamics ( $\eta$ ).
- Solution NB: even as  $T \to \infty$  interaction energies are actually large ( $\alpha_s T$ ), but the kinetic energies are larger still

#### Where exactly is the critical point?



## Location of the critical point from the Lattice



## Sign Problem

Thermodynamics is encoded in the partition function

$$Z = \sum_{\text{quantum states}} \exp\{-\beta(\mathcal{E} - \mu N)\} = \int \mathcal{D}(\text{paths}) \, \exp\{-S_E\}$$

 $S_E$  - action on a path in imaginary time  $\tau$  from 0 to  $\beta$ .

● Usually,  $S_E$  - real. So  $\int D(\text{paths}) e^{-S_E}$  - itself is a partition function for *classical* statistical system in 3 + 1 dimensions. Monte Carlo methods work.

**.** Not so for  $\mu \neq 0$ .

$$e^{-S_E} = e^{-S_{\text{gluons}}} \det D_{\text{quarks}}.$$

and  $\det D_{\text{quarks}}$  - complex for  $\mu \neq 0$ .

Monte Carlo translates weight  $e^{-S_E}$  into probability and fails if  $S_E$  is not real.

Recent progress based on various techniques of circumventing the problem:
Reweighting (use weight at  $\mu = 0$ );

- Taylor expansion;
- **J** Imaginary  $\mu$ ;
- **\_** ...

## Heavy-ion collisions and the phase diagram

STAR@RHIC



Final state is thermal



(from Becattini et al)

an event "Little Bang"

#### Location of the critical point vs freeze-out



#### Location of the critical point vs freeze-out



## Location of the critical point vs freeze-out



Needed:

- Experiments:
  - RHIC,
  - NA61(SHINE) @ SPS,
  - SBM @ FAIR/GSI
  - NICA @ JINR

Improve lattice predictions, understand systematic errors.

Understand critical phenomena in the dynamical environment of a h.i.c., develop better signatures

# **Critical mode and equilibrium fluctuations**



Magnitude of fluctuation and correlation length:

$$\langle \sigma(\boldsymbol{x})\sigma(\boldsymbol{0})
angle \sim \left\{ egin{array}{cc} e^{-|\boldsymbol{x}|/\xi} & \mbox{for} & |\boldsymbol{x}|\gg\xi \ 1/|\boldsymbol{x}|^{1+\eta} & \mbox{for} & |\boldsymbol{x}|\ll\xi \end{array} 
ight.$$

$$\langle \sigma_{\mathbf{0}}^2 \rangle = \int d^3 \boldsymbol{x} \langle \sigma(\boldsymbol{x}) \sigma(\mathbf{0}) \rangle \sim \xi^{2-\eta}$$

critical singularity is a *collective* phenomenon

 $\sigma$  or  $n_B$  or  $T^{00}$ ? Because they mix, only one linear combination is critical.

# **Fluctuation signatures**

Experiments give for each event: multiplicities N<sub>π</sub>, N<sub>p</sub>, ..., set of momenta p, etc.
 These quantities fluctuate event-by-event.

- Measure sq. var., e.g.,  $\langle (\delta N)^2 \rangle$ ,  $\langle (\delta p_T)^2 \rangle$ .
- What is the magnitude of these fluctuations near the QCD C.P.? (Rajagopal-Shuryak-MS, 1998)



- Universality tells us how it grows at the critical point:  $\langle (\delta N)^2 \rangle \sim \xi^2$ . Correlation length is a universal measure of the "distance" from the c.p. It diverges as  $\xi \sim (\Delta \mu \text{ or } \Delta T)^{-2/5}$  as the c.p. is approached.
- Magnitude of  $\xi$  is limited < O(2-3 fm) (Berdnikov-Rajagopal).
- "Shape" of the fluctuations can be measured: non-Gaussian moments. As ξ → ∞ fluctuations become less Gaussian (ξ → ∞ vs N → ∞).
- Higher cumulants show even stronger dependence on  $\xi$ (PRL 102:032301,2009):

$$\langle (\delta N)^3 \rangle \sim \xi^{4.5}, \qquad \langle (\delta N)^4 \rangle - 3 \langle (\delta N)^2 \rangle^2 \sim \xi^7$$

which makes them more sensitive signatures of the critical point.

#### Relation between $\sigma$ fluctuations and observables

Consider example: fluctuations of multiplicity of pions (or protons).

Free gas:  $n_p^0$  – fluctuating occupation number of momentum mode p.
Ensemble (event) average  $\langle n_p^0 \rangle = f_p$  and

$$n_{p}^{0} = f_{p} + \delta n_{p}^{0}; \quad \langle \delta n_{p}^{0} \delta n_{k}^{0} \rangle = f'_{p} \delta_{pk}; \qquad f_{p} = (e^{\omega_{p}/T} \mp 1)^{-1}; \ f'_{p} \equiv f_{p}(1 \pm f_{p}).$$

Souple these particles to  $\sigma$  field:  $G\sigma\pi\pi$  (or  $g\sigma\bar{N}N$ ). Think of  $m^2 \equiv m_0^2 + 2G\sigma$  as "fluctuating mass". Then

$$\delta n_{p} = \delta n_{p}^{0} + \frac{\partial f_{p}}{\partial m^{2}} 2G\sigma = \delta n_{p}^{0} + \frac{f'_{p}}{\omega_{p}} \frac{G}{T}\sigma$$

• Using  $\langle \delta n_p^0 \sigma \rangle = 0$  and  $\langle \sigma^2 \rangle = (T/V) \xi^2$ .

$$\langle \delta n_p \delta n_k \rangle = f'_p \delta_{pk} + \frac{1}{VT} \frac{f'_p}{\omega_p} \frac{f'_k}{\omega_k} G^2 \xi^2.$$

More formal derivation: PRD65:096008,2002

#### Relation between $\sigma$ fluctuations and observables

Consider example: fluctuations of multiplicity of pions (or protons).

Free gas:  $n_p^0$  – fluctuating occupation number of momentum mode p.
Ensemble (event) average  $\langle n_p^0 \rangle = f_p$  and

$$n_{\boldsymbol{p}}^{0} = f_{\boldsymbol{p}} + \delta n_{\boldsymbol{p}}^{0}; \quad \langle \delta n_{\boldsymbol{p}}^{0} \delta n_{\boldsymbol{k}}^{0} \rangle = f_{\boldsymbol{p}}^{\prime} \delta_{\boldsymbol{p}\boldsymbol{k}}; \qquad f_{\boldsymbol{p}} = (e^{\omega_{\boldsymbol{p}}/T} \mp 1)^{-1}; \ f_{\boldsymbol{p}}^{\prime} \equiv f_{\boldsymbol{p}}(1 \pm f_{\boldsymbol{p}}).$$

• Couple these particles to  $\sigma$  field:  $G\sigma\pi\pi$  (or  $g\sigma\bar{N}N$ ). Think of  $m^2 \equiv m_0^2 + 2G\sigma$  as "fluctuating mass". Then

$$\delta n_{p} = \delta n_{p}^{0} + \frac{\partial f_{p}}{\partial m^{2}} 2G\sigma = \delta n_{p}^{0} + \frac{f'_{p}}{\omega_{p}} \frac{G}{T}\sigma$$

• Using  $\langle \delta n_p^0 \sigma \rangle = 0$  and  $\langle \sigma^2 \rangle = (T/V) \xi^2$ .

$$\langle \delta n_p \delta n_k \rangle = f'_p \delta_{pk} + \frac{1}{VT} \frac{f'_p}{\omega_p} \frac{f'_k}{\omega_k} G^2 \xi^2.$$

More formal derivation: PRD65:096008,2002

## **2-particle correlator as a 4-point function**

● The 2-particle correlator measures 4-point function at q = 0 (for  $p \neq k$ ). Singularity appears at q = 0 due to vanishing  $\sigma$  screening mass  $m_{\sigma} \rightarrow 0$ . (i.e.,  $\xi = 1/m_{\sigma} \rightarrow \infty$ ).



$$\langle \delta n_p \delta n_k \rangle_{\sigma} = \frac{1}{T} \frac{f_p (1+f_p)}{\omega_p} \frac{f_k (1+f_k)}{\omega_k} \frac{G^2}{m_{\sigma}^2}$$

Check:  $\langle \delta n_p \delta n_k \rangle = \langle n_p n_k \rangle - \langle n_p \rangle \langle n_k \rangle > 0$  — as in attraction. Attraction lowers the energy of a pair (making it more likely) by  $\langle H_{\text{interaction}} \rangle \sim$  forward scattering amplitude.

Source of the second state of the second s

$$\chi_B \sim \langle \delta B \delta B \rangle_{\sigma} = \langle (\delta N_p - \delta N_{\bar{p}} + \delta N_n - \delta N_{\bar{n}})^2 \rangle_{\sigma} = \langle \delta N_p \delta N_p \rangle_{\sigma} + \dots$$

Each term on r.h.s. is  $\sim \frac{1}{m_{\sigma}^2}$ ,  $\Rightarrow \langle \delta B \delta B \rangle \sim 1/m_{\sigma}^2 = \xi^2$ .

It is enough to measure protons  $\langle \delta N_p \delta N_p \rangle$  (Hatta, MS, PRL91:102003,2003)

## **Higher moments (cumulants) of fluctuations**

Consider probability distribution for the order-parameter field:

$$P[\sigma] \sim \exp\left\{-\Omega[\sigma]/T\right\},$$

 $\Omega$  – effective potential:

$$\Omega = \int d^3x \left[ \frac{1}{2} (\boldsymbol{\nabla}\sigma)^2 + \frac{m_\sigma^2}{2} \sigma^2 + \frac{\lambda_3}{3} \sigma^3 + \frac{\lambda_4}{4} \sigma^4 + \dots \right] . \qquad \Rightarrow \quad \xi = m_\sigma^{-1}$$

■ Moments of zero-momentum mode  $\sigma_0 \equiv \int d^3x \, \sigma(x) / V$ .

$$\kappa_2 = \langle \sigma_0^2 \rangle = \frac{T}{V} \xi^2; \qquad \kappa_3 = \langle \sigma_0^3 \rangle = \frac{2\lambda_3 T^2}{V^2} \xi^6;$$
  
$$\kappa_4 = \langle \sigma_0^4 \rangle_c \equiv \langle \sigma_0^4 \rangle - \langle \sigma_0^2 \rangle^2 = \frac{6T^3}{V^3} [2(\lambda_3 \xi)^2 - \lambda_4] \xi^8.$$

+

Tree graphs. Each zero-momentum propagator gives  $m_{\sigma}^{-2}$ , i.e.,  $\xi^2$ .



#### **Moments of** *observables*

Example: multiplicity. Since multiplicity is just the sum of all occupation numbers, and thus

$$\delta N = \sum_{\boldsymbol{p}} \delta n_{\boldsymbol{p}},$$

the cubic moment (skewness) of the pion multiplicity distribution is given by

$$\langle (\delta N)^3 \rangle = \sum_{p_1} \sum_{p_2} \sum_{p_3} \langle \delta n_{p_1} \delta n_{p_2} \delta n_{p_3} \rangle \,, \qquad \text{where } \sum_{p} = V \int d^3 p / (2\pi)^3.$$



Since  $\langle (\delta N)^3 \rangle$  scales as  $V^1$  we suggest  $\omega_3(N) \equiv \frac{\langle (\delta N)^3 \rangle}{\overline{N}}$  which is  $V^0$ .

**Solution** For more  $\Rightarrow$  Christiana's talk.

## **Concluding remarks**

- **Phase diagram of QCD at nonzero** T and  $\mu_B$  is rich.
- Different corners are accessible by different methods.
- **J** The interesting region:  $T \sim \mu_B \sim 1 \text{fm}^{-1}$  is the most difficult:
  - Under active theoretical investigation: much progress in lattice approaches.
  - Still much to be done to narrow down the prediction for the critical point. Agreement between different approaches must be achieved. New methods are needed.
- Heavy ion collision experiments can discover the critical point by observing certain non-monotonous signatures RHIC scan (~2010) or, for higher μ<sub>B</sub>, FAIR/GSI.