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QCD phase diagram (today)
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Models (and lattice) suggest the transition becomes 1st order at some µB .

Can we observe the critical point in heavy ion collisions, and how?
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QCD phase diagram(role of the chiral symmetry)

1

0.1

T, GeV

0 µB, GeV

vacuum

hadron gas

QGP

broken chiral symmetry

restored chiral symmetry massless quarks

What is the order of the transition?
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QCD phase diagram(role of the chiral symmetry)
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QCD phase diagram(role of the chiral symmetry)
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Lattice: Crossover is firmly established (most recently Aoki et al)

RHIC: Matter near/above crossover – strongly coupled liquid. LHC will study it.
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Critical points in known liquids
Critical point ∃ in many liquids (critical opalescence).

Water:

QCD phase transition basics – p. 4/??



Confinement/deconfinement transition

Confinement is difficult to define for theories with quarks.

Polyakov’s definition, 〈P 〉 = 0, does not work, because 〈P 〉 6= 0.
The Z3 symmetry is out once quarks are in.

Confining string between two color sources is not infinite — it snaps:

Q −−−−−− Q̄ ⇒ Q −− q̄ + q −− Q̄

“No colored states”? This is true by definition of the theory. Not a dynamical
property. There is no deconfinement in this definition of confinement.
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Deconfinement transition in QCD

But there is a sense in which deconfinement does happen in QCD:
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p4: Nτ=4
6

asqtad: Nτ=6

s/T 3 – a measure of the number of degrees of freedom.

gluons and quarks act as (count as) unconfined (“free”) above Tc!

NB: “free” as far as d.o.f. counting (s), but not necessarily as far as hydro-
dynamics (η).

NB: even as T → ∞ interaction energies are actually large (αsT ), but the
kinetic energies are larger still
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Where exactly is the critical point?
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Location of the critical point from the Lattice
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Systematic errors are not shown.
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Sign Problem

Thermodynamics is encoded in the partition function

Z =
X

quantum states

exp{−β(E − µN)} =

Z

D(paths) exp{−SE}

SE - action on a path in imaginary time τ from 0 to β.

Usually, SE - real. So
R

D(paths) e−SE - itself is a partition function for classical
statistical system in 3 + 1 dimensions. Monte Carlo methods work.

Not so for µ 6= 0.

e−SE = e−Sgluons det Dquarks.

and det Dquarks - complex for µ 6= 0.

Monte Carlo translates weight e−SE into probability and fails if SE is not real.

Recent progress based on various techniques of circumventing the problem:
Reweighting (use weight at µ = 0);
Taylor expansion;
Imaginary µ;
...
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Heavy-ion collisions and the phase diagram
STAR@RHIC

an event
“Little Bang”

Final state is thermal
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Location of the critical point vs freeze-out
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Location of the critical point vs freeze-out
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Location of the critical point vs freeze-out
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Needed:

Experiments:

RHIC,

NA61(SHINE) @ SPS,

CBM @ FAIR/GSI

NICA @ JINR

Improve lattice predictions, under-
stand systematic errors.

Understand critical phenomena in
the dynamical environment of a h.i.c.,
develop better signatures
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Critical mode and equilibrium fluctuations
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µ > µE

µ = µE

µ < µE

〈σ2〉 ∼ (Ω′′)−1

σ

µ

T
large equilibrium

(Ω′′)−1 → ∞

fluctuations

e.g., σ ∼ ψ̄ψ − 〈ψ̄ψ〉
Consider ”soft mode” σ

Order parameter is
∫
V σ = σ0

Einstein, 1910:

i.e., eS, or e−Ω/T

P (σ0) ∼ number
of states with that σ0

Ω(σ0)

Magnitude of fluctuation and correlation length:

〈σ(x)σ(0)〉 ∼



e−|x|/ξ for |x| ≫ ξ

1/|x|1+η for |x| ≪ ξ

〈σ2
0〉 =

Z

d3
x〈σ(x)σ(0)〉 ∼ ξ2−η

critical singularity is a collective
phenomenon

σ or nB or T 00? Because they mix, only one linear combination is critical.
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Fluctuation signatures

Experiments give for each event: multiplicities Nπ,
Np, . . . , set of momenta p, etc.
These quantities fluctuate event-by-event.

Measure – sq. var., e.g., 〈(δN)2〉,〈(δpT )2〉.

What is the magnitude of these fluctuations
near the QCD C.P.? (Rajagopal-Shuryak-MS, 1998) )pN∆Net Proton (
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Universality tells us how it grows at the critical point: 〈(δN)2〉 ∼ ξ2.
Correlation length is a universal measure of the “distance” from the c.p.
It diverges as ξ ∼ (∆µ or ∆T )−2/5 as the c.p. is approached.

Magnitude of ξ is limited < O(2–3 fm) (Berdnikov-Rajagopal).

“Shape” of the fluctuations can be measured: non-Gaussian moments.
As ξ → ∞ fluctuations become less Gaussian (ξ → ∞ vs N → ∞).

Higher cumulants show even stronger dependence on ξ
(PRL 102:032301,2009):

〈(δN)3〉 ∼ ξ4.5, 〈(δN)4〉 − 3〈(δN)2〉2 ∼ ξ7

which makes them more sensitive signatures of the critical point.
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Relation betweenσ fluctuations and observables
Consider example: fluctuations of multiplicity of pions (or protons).

Free gas: n0
p – fluctuating occupation number of momentum mode p.

Ensemble (event) average 〈n0
p〉 = fp and

n0
p = fp+δn0

p ; 〈δn0
pδn0

k〉 = f ′
pδpk ; fp = (eωp/T ∓ 1)−1; f ′

p ≡ fp(1 ± fp).

Couple these particles to σ field: Gσππ (or gσN̄N ).
Think of m2 ≡ m2

0 + 2Gσ as “fluctuating mass”. Then

δnp = δn0
p +

∂fp

∂m2
2Gσ = δn0

p +
f ′

p

ωp

G

T
σ

Using 〈δn0
pσ〉 = 0 and 〈σ2〉 = (T/V )ξ2.

〈δnpδnk〉 = f ′
pδpk +

1

V T

f ′
p

ωp

f ′
k

ωk

G2ξ2.

More formal derivation: PRD65:096008,2002
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2-particle correlator as a 4-point function

The 2-particle correlator measures 4-point function at q = 0 (for p 6= k).
Singularity appears at q = 0 due to vanishing σ screening mass mσ → 0.
(i.e., ξ = 1/mσ → ∞).

p p

k k

1
m

2
σ

〈δnpδnk〉σ =
1

T

fp(1 + fp)

ωp

fk(1 + fk)

ωk

G2

m2
σ

.

Check: 〈δnpδnk〉 = 〈npnk〉 − 〈np〉〈nk〉 > 0 — as in attraction.
Attraction lowers the energy of a pair (making it more likely)
by 〈Hinteraction〉 ∼ forward scattering amplitude.

Consider baryon number susceptibility, which should diverge: χB ∼ ξ2−η

χB ∼ 〈δBδB〉σ = 〈(δNp − δNp̄ + δNn − δNn̄)2〉σ = 〈δNpδNp〉σ + . . .

Each term on r.h.s. is ∼
1

m2
σ

, ⇒ 〈δBδB〉 ∼ 1/m2
σ = ξ2.

It is enough to measure protons 〈δNpδNp〉 (Hatta, MS, PRL91:102003,2003)
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Higher moments (cumulants) of fluctuations
Consider probability distribution for the order-parameter field:

P [σ] ∼ exp {−Ω[σ]/T} ,

Ω – effective potential:

Ω =

Z

d3x

»

1

2
(∇σ)2 +

m2
σ

2
σ2 +

λ3

3
σ3 +

λ4

4
σ4 + . . .

–

. ⇒ ξ = m−1
σ

Moments of zero-momentum mode σ0 ≡
R

d3x σ(x)/V .

κ2 = 〈σ2
0〉 =

T

V
ξ2 ; κ3 = 〈σ3

0〉 =
2λ3T

2

V 2
ξ6 ;

κ4 = 〈σ4
0〉c ≡ 〈σ4

0〉 − 〈σ2
0〉

2 =
6T 3

V 3
[2(λ3ξ)

2 − λ4] ξ
8 .

Tree graphs. Each zero-momentum propagator gives m−2
σ , i.e., ξ2.

+
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Moments of observables

Example: multiplicity. Since multiplicity is just the sum of all occupation
numbers, and thus

δN =
X

p
δnp ,

the cubic moment (skewness) of the pion multiplicity distribution is given by

〈(δN)3〉 =
X

p1

X

p2

X

p3

〈δnp1
δnp2

δnp3
〉 , where

P

p = V
R

d3p/(2π)3.

〈δnp1
δnp2

δnp3
〉σ =

2λ3

V 2T

„

G

m2
σ

«3 v2
p1

ωp1

v2
p2

ωp2

v2
p3

ωp3

v2
p = n̄p(1 ± n̄p)

Similarly for 〈(δN)4〉c.

Since 〈(δN)3〉 scales as V 1 we suggest ω3(N) ≡
〈(δN)3〉

N̄
which is V 0.

For more ⇒ Christiana’s talk.
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Concluding remarks

Phase diagram of QCD at nonzero T and µB is rich.

Different corners are accessible by different methods.

The interesting region: T ∼ µB ∼ 1fm−1 — is the most difficult:

Under active theoretical investigation: much progress in lattice approaches.

Still much to be done to narrow down the prediction for the critical point.
Agreement between different approaches must be achieved.
New methods are needed.

Heavy ion collision experiments can discover the critical point by observing
certain non-monotonous signatures — RHIC scan (∼2010)
or, for higher µB , – FAIR/GSI.
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